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ABSTRACT

Frequency stabilization plays a very critical role in diverse applications such as long
distance fiber and free space optical communications, interferometric sensing, optical gy-
roscopes, squeezed states of light, atomic beamn trapping, and gravity wave detection,

Frequency stabilization can be achieved by locking lasers to a Fabry-Perot etalon. Oue
possible frequency stabilization technique is to use an oscillator that dithers o: modulates
the frequency of the lasers, The frequency-clithtmd laser light is analyzed via transmission
through the Fabry-Perot. The output of the etalon is detected by a photodetector and then
correlated wit h the dithering oscillator signal to obtain frequency locking error estimates
and subsequently control the frequency of the lasers.

A theoretical analysis is performed for a Fabry-Perot frequency stabilization sub-
system, disturbed by shot noise and frequency noise consisting of white, 1/~, and 1 /f?
components. Contributions of the shot noise and frequency noise components to the to-
t a frequency locking error variance are derived. Given the characteristics of the etalon,
an optimal depth of frequency modulation is calculated for the dithering oscillator that
maximizes the locking error signal amplitude and hence results in the best possible locking

performance. Total frequency locking error as a function of loop bandwidth is displayed.
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Finally, the expected performance of an optimized Fabry-1'trot stabilization system is

estimnated.

I. INTRODUCTION

Frequency stabilization plays a very critical roles in applications such as data commu-
nication, Doppler tracking, and ultra- high precision absolute-distal]ce mcasuring, where
coherent optical heterodyne detection is utilized. The requireinent of the laser frequency
stability for coherent optical communications was investigated in [1], and shown that the
required signal power for, phase locked receiver can be further reduced provided that
transmit and local oscillator laser are stabilized to a external reference. Further more,
optical carrier capable Of achieving similar frequency stability to current-day RF system
can potentialy offer significant improvement in space-craft navigation capabilities [1].

Optimal loop bandwidth of the optical phase-locked loop decreases with decreasing
signal-to-noise ratio [2], ant] therefore excellent frequency stability is required in order to
achieve phase coherent optical heterodyne reception when low signal power reception is
expected. Since the spectral filtering is perforied at interinediate frequency, where the
bandwidth selection is very effective, heterodyne detection offers a good background noise
reject ion, Band width select ive nat ure of coherent receiver can also lead to a more efficient
usc of the optica spectrum and potential for multiple access communication. Similarly
in high-precision metrology using mult iple-wavelengt h interferomet ry, high] y st able laser
sources are required to achieve sub- nanomet er measurements of absolute. dist antes [3, 4]. In
all such applications, frequency of the lasers must be st abilized, at frequencies with relative
offscts to each other, over prolonged period of time. This can be achieved by locking the
lasers to different order peaks of a single Fabry-Perot etalon (FPE) as described below.

The conceptual design of an FPE two-laser frequency stabilization system is shown in
Fig. 1. The two laser stabilization systems arc esseuntially independent and they share the
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single FPE and single drive oscillator onanon-interacting basis. Whether or not one laser
is locked to the FPE makes no difference to the other laser, and hence ouly one systemn
will be discussed in the following.

The laser frequency is modulated, at a rate much higher than the basic laser frequency
jitter, using the signal from the common drive oscillator. After passingthroughthe FPE,
the frequency-dithered laser signa is registered by a photodetector, If the laser’s frequency
is accurately locked to the assigned FPFE transmission peak, the component of the pho-
todetector output at the fundamental oscillator frequency will be zero, However, a sinall
offset between the laser frequency and the transmission peak of the FPE will result in a
non-zero output at the fundamental frequency. The photodetector output is homodyned
with drive oscillator signal to derive an estimate of the laser-vs.-FPIl frequency offset. The
resulting error signal is low-pass filtered and fed hack to the control inputs of the laser to

eflect a frequency correction, A schematic of this optical frequency locking loop (O IL])

is shown in Fig. 2.

11. MATHEMATICAL MODE]L

The transmission coefficient for a lossless FPE can be modeled as

T‘IFPE T 1—;2-“——--_._.__“ , (1)
14 Fsin'(m—%

V¥SR )

where F = (£F)? is the coefficient of finesse, and Y¥skr is the free spectral range.The
finesse F is given by

FotR_ (2)
VFWHM

where vpwym is the fullwidth at half maximum of the FPE transmission peak. The

frequency of the lasers, v,is modeled as

V=1 ave + Av(l), 3
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where v, is the resonance frequency, ve is the frequency deviation from the transmission
peak, and Ap(t)isthe frequency modulat ion.

More specifically, the frequency modulation is modeled as
Av(t) = V2 g cos(9), (4)

where g, is the modulation depth and § is the modulation frequency which is much
higher than the inherent laser frequency jitter. In the following, the terms “modulation
frequency” and “fundamental frequency“ will he used interchangeably. Equation (1) is

plotted in Fig. 3 for the custom, high finesse FPE used in laboratory development work.
The cavity length of thisFPE is5 cm, which results in a free spectra range of 3 G Hz. The
full width at haf maximum, VFWHM, iS experimentally measured to be 300 KHz. These
cavity parameters are used throughout this paper.

The output of the photodetector is modecled approximately as
v(t) = V24 Typp(ve, t) + n(t), (5)

where the noise n(t) is modeled as a narrowband Gaussian random process. Using equat ion

(1)-(5), the expression for the photodetector output can be approximated as

1
v(t) = \/ﬁAl + Fsill%ﬂui;tj;ﬁﬁgm cosi@n) + n(t), (6)
VSR

This model effectively assumes that the FPE reacts instantaneouly to changes in the
modulation frequency, 2. This assumption is reasonable if the modulation frequency of
the drive oscillator is muchless than vpwnM. (The finite response time tof the FPE is
however, taken into account in deriving the power spectral density of frequency jitter in
Appendix A))

Figures 4. shows the normalized photodetector output as the laser is modulated by

the drive oscillator, Specifically, the output is plotted as a function of time for the case of
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no frequency locking error and inthe absence of noise. A similar plot is shown in Fig. 5
for the case when some frequency locking error is present. This frequency locking error is
responsible for the appearance of a fundamental component (period 0.01 relative units) in

Fig. 5.

[1l. FOURIER EXPANSION AND OPTIMAL MODULATION DEPTH

Note that the signal portion of the photodetector output, given by the first term of
the right hand side of (6) , is periodic with period T:%}'—. This periodicity suggests
the existence of a Fourier series expansion for the signal. To extract the error information
contained in each harmonic, the photodetector output signal is expanded as a trigonometric
Fourier series:

o(t) = V24 {ao + }C_’E [an cos(nfdt) 4+ b, sin(th)]} + n(t). (7)

n=1

The Fourier coefficients are given by

1 to+7 1 -
g = — N e
Y /zo 13 F S;n?(,rl’d-!:.-__i_.ﬁsg-sg?iflﬂ

= UrSR )
an = 2 o | : q cos(nflt) dt and
T Jy [ 14 F sin?(n 2t 2ed ‘"/f:; COS(QQ)J ’
o i | 1 ],
b, = T ) L-ln?l—l;‘siKQ(wl _;r+_;:%:%-§:-:§gqﬁ-)-- sin(nf2t) dt. (8)

One may choose to= —2"/2 so that the integration limits become symmetric and the b,
arc thus seen to be identically zero.

Again, the OFLL’s synchronous detector will pass only that portion of the photode-
tector output that matches its reference input (i.e. the drive oscillator) in both frequency

and phase. The error signal can therefore be written as

e(t) = Aar(ve , 9m) + 7(t), ©)
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where the fundamental Fourier coeflicient depends on both frequency locking error, v,
and the choice of modulation depth, g,,. The 7(t) is the equivalent noise process created
by multiplying the noise at the photodetector output with the oscillator signal. The error
signal ¢(t)isthen low-pass filtered and fedback tot helaser control inputs.

As an dternative to the Fourier series expansion, the photodetector outputiay be
approximated by a first-order Taylor series expansion [5], This approach yields an error
signal

V2n

e(t)~ -8 A= e i A(t), (10)
Vi whM

promotional to v.. Hewer (10) is only valid for small ¢, and is best viewed as a qualitative
descript ion of the error signal.

It is, of course, desirable to maximize the error signal for a given laser-vs.-FPE fre-
quency offset, The fundamental Fourier coefficient is plotted as a function of modulation
depth in Fig. 6. Note that the error signal reaches a maximum at approximately 80 KHz,
indicating the existence of an optimal modulation depth. For comparison, Fig. 6 also plots
the first-order Taylor series expansion of the error signal,

Figure 7 shows the fundamental Fourier coefficient as a function of modulation depth
for several values of frequency locking error. This figure confirms that the optima mod-
ulation depth is &~ 80 KHz and is fairly independent of frequency locking error. Figure 8
shows the fundamental Fourier coefficient as a function of frequency locking error for mod-
ulation depths of 70, 80 and 90 KHz. This figure indicates that the error signal amplitude
is insensitive to small variation in modulation depth for frequency locking errors as large

as 50 KHz.

IV. FREQUENCY- LockED OPERATION AND EFFECT oF LOOP Noise

A simplified block diagram of the OFLL is shown in Fig, 9, where vp(t) is the

frequency jitter due to laser frequency noise, v.(t) is the frequency error, Z/ (1) is the
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frequency correction, 7(t) is the additive noise, and 4 is proportional to thelaser signs]
power at the input of the FPE. The loop gain I\ isthe product of the laser tuning coefficient
and all other amplifier gains, and F(s) isthe loop filter transfer function. The function
gn1, (¥e) is a nonlinear function of ve, and is the fundamental Fourier coefficient evaluated
a the optimal modulation depth of 80 KHz. When the frequency locking error is small

the nonlinear function gNL (v,) can be approximated as

INI (ve) & gn1,(0)ve, (11)

where ¢n1,(0) is the derivative of gy, (Ve ) with respect to v, evaluated at ve= O. The
exact and approximate forms of gnL(¥ ) arc plottedin Fig. 10; this plot verifies that
approximation (11 ) is accurate provided the frequency locking error is less than +30 KHz.

It can be shown that the OFLL closed loop transfer function, from vy (t)to v (1), is

[6]

Hy(9 = —on(OKF() -

where F(s) is the loop filter transfer function. The transfer function from v (1) to ve(t),
H,(s), is related to the closed loop transfer function by Ha(s)=1— H; (9),

The performance of the OFLL is affected by both additive noise and frequency noise,
When the loop is operating in the linear region, the effects of individual noise sources can
be determined separately and then combined to obtain the overall result [7], The variance
in frequency offset due to additive noise can be written as

o : S
chn= [ G (‘Eﬁ%(("{)%}‘d- (13
where San(f) is the one sided power spectral density (PSD) of the additive noise [6, 7,

9]. The contribution due to frequency jitter can be calculated as

oty = / |Ha(i2n ) S () df, (14
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where Syr(f) is the PSD of the frequency jitter [6,7,9]. The PSD of the frequency jitter

can be further expanded (Appendix A) as.

i 2 & -
Sur(f) = [%i{\?f}] [k] 1 -L; + %] 0 < f <ox, (15)

where At represents the photon lifetime of the FPE. The photon lifetime is related to the
FPE’s v¥wHM by vpwnMm = 1/(nAt).

For asuitable choice of F(s),H2(72xf) will have zeros at f= O, characteristic Of
a perfect second-order loop [6, 7]. This loop will thenbe unconditionally stable and
the zeros of Ho(j2nf) at f= O will compensate for the poles of the frequency jitter
spectrum, allowing the loop to accurately track low frequency fluctuations, Moreover, a
perfect linearized second-order loop will also have a theoretically infinite pull-in range for

frequency acquisition [6], For these reasons, F(s)is chosen to be of the formn
F(S) = -~ . (16)

For a perfect second-order OFLL, the damping factor, ¢, and one sided loop bandwidth,

By, are given by [7]

o 1 [t Agu (0K
“ 5 5\/ T an
and
= 2
me [Tt o
0
- T1 + TgAgN_!,(O)K (]8)
- 41479
respect ivel y.

When the additive noise is dominated by shot noise with one sided power spectral

density No [Watts/Hz], then the variance due to additive noise becomes

2 1

LI 19
AN p9%.(0)" (19
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where p = ;3]—0 . The contribution of frequency jitter to the variance can be written, using

(15) as

= sin(mw Nk k 8
o [ (85 3]

=ou 4 ol tota (20)

where 02, a;"/f, and af/{, are the contributions of the white, 1/f, and 1/f? components of
the frequency noise.

For a general perfect OFLL, the above integtals for 02, o 3 /@ d o? /2 &rc very difficult
to evaluate analytically. However, some simplifications can be made if the OFLI. is assumed
to be critically damped, i.e. (= 1. Detailed calculations of these ¢ = 1 integrals for each
of the frequency noise contributions are given in Appendices B,C, and D. The results
are summarized below, where B1,==5/(472)for a critically-damped, perfect second-order
OFLI..

The white frequency noise contribution is calculated in Appendix B:

5 1 ky 8 8

2 _ 2 __ - M - <B , —=DBLAt) . 21
IR BLAY A [1 5}LAt] eXp( 50 )} )
When B At <<1, (21) can be approximated by

~ = (BLAt << 1), (22)

When B At >>1, then exp (- £B1,At) ~ O, and (21) can be reduced to

k
2l 1k

55 (BLAT) Al (BLAt >> 1). (23)

The contribution of the 1/f component can not be calculated in a closed form. How-

ever it is calculated in termns of exponential integrals in Appendix C as

5 ko 8 8 . (8 8
2
o1 @(Q‘:ét,) {E] (EBLAt) exp (EB[,Ai) + Ei (SBLAt) exp (~BBI,At>} ,
(24)




where El(z), and Ei(z)are known as expouential integrals given by [12],

oo~

(¥
Ei(2) = e dt (larg z| < m), and
J .

x

Bi(x) = ~ 5 [a(- 2 4 i00) 4 By~ - io0)]. (25)

Equation (24) may be approximated for extreme values of By, Atto obtain some physical
insight.
When Bj, At <<1, the approximate expression for (24) can be obtained, using series

expansion of El(z), as
2 8,
oy ko [1—y— lxl(glfLAt) (BLOt << 1), (26)

where v = 0.577 ... is Euler's constant, (hi the other hand, when Bj, At >> 1, (24) can

be approximated using the asymptotic expansion of El(z) as

20k,

64 (B, A1) (BLAt >> 1). (27)

2
01/"\/

The contribution of the 1 /f2 frequency noise component is calculated in Appendix D

) 14
2
2 180 ™ ks [ 8 8 ) 28)
o5 /12 512((BLAt)2H}L{1 [l + 5BLAt] exp (—5B[,At) }
When Bj At <<1, (28) can be approximately written as
5n2 k
02 ~ -i%-}}‘l‘ (BLAt << 1), (29)

When B At >> 1, then (28) can be reduced to

125 =% &k
0?/{23 51_2(-81‘ Atj%'b‘% (B[,At >> 1) (30)
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Figure 11 shows the contributions of 02, of/f, and alz/p. Also shown is thesum of
these contributions, o3, This figure is plotted for At =1.06 microseconds, k;= 0.1 Hz,
ky= 0.75 x 10'Hz* and k3= 0.5 x 10'Hz? as experimentally measured in [S].

Because the additive noise and the frequency jitter arc independent, the total fre-

quency locking error variance can be written as

ol =oin+ oy
1
EPTRITSSS
P 9%1,(0)

5 ko 8 _ 8
4 32 (BLALY tl - [1 - SBI,At] exp (—~5BLAt)}
s Kk [F 8 - '8 . (8 8
S 5y [ = = Ei{ - —=
+ 16 (BLAY) 1 <5BI,At) exp (51?1‘At) + Ea (5BLAt) exp ( 5B1,At)}

125 72 ky 8 8
2B1At e -2 .
* 512 (B, At)? By . [1 ! 5 LA ] P ( 5BLAt>} (31)

When B At <<1, (31) can be approximately written using (22) , (26) , and (29) as

ey Y g toikn[- o mEnianle 524
0y~ PQ&I,(O)BL ‘*‘2 At”'} 1! Y 11(5 L ) 16 BL (BLAt << 1) (32)

On the other hand, when By At >> 1, (31) can be approximated using (23) , (27) , and

(30) as
1 5 1 ki 25 k 125 % k
: o, 1 o, 5 by 25 k15 ks
v Nk (0" B2 (Buah AT 64 (Bt 512 (Bat B, (PrAt>> L)
(33)

Figure 12 plots the variances due to additive noise and frequency jitter, as well as
their sum. The additive noise plot assumes p = 90 dB-Hz. It can be seen from Fig. 12
that performance of the OFLL is frequency noise limited if the loop bandwidth is. less than
~ 2300 Hz and otherwise shot noise limited. A family of curves representing total rins
frequency locking error for different values of pis plotted in Fig, 13 as a function of loop

bandwidth. Figure 13 shows that an rms frequency locking error of less than 600 Hz can
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be achieved with a loop bandwidth of 500Hz for p greater than 80 dB.The fact that
this locking error is much less than 30 KHz indicates that the linear approximation (11)
is self-consistent,

Fig. 13 alsoindicates the existence of an optimal loop bandwidth resulting in a
minimum frequenc y locking error variance. This optimal bandwidth depends on p and is
about 500 Hz for p between 80 dBand 100 dB. The optima loop bandwidth of an OFLL

can be calculated for any given p.

V. SUMMARY anD C ONCLUSIONS

A basic laser frequency locking system employing a Fabry-Perot et alon and frequency
modulating oscillator was outlined. A theoretical analysis of this optical frequency locking
loop (OFLL) estimated its performance in the presence of shot noise and frequency noise
typical of diode-pumped Nd:YAG lasers. In paticular:

a) Contributions from shot noise and each of the frequency noise components to total
frequency locking error were analyzed and displayed as a function of loop bandwidth.
b) An optimal modulation depth, g,,, of ~ 80 KHz that maximized the error signal

amplitude and minimized frequency locking error was ident ified.

c) ‘I'he expected performance of the OFLL,as measured by o2 was then estimated for

Ve

this choice of optimal modulation depth.

The analysis shows that an rrns frequency locking error, i.e. an offset of laser-vs.-FPE
transmission peak frequency, of less than 600 Hz can be achieved with a loop bandwidth
of 500 Hz for p greater than 80 dB. This verifies that the linear approximation (11) is
self-consistent for analyzing the proposed frequency locking subsystem using FPE. Based
on this analysis, an optimum loop bandwidth which minimizes frequency locking error can

be determined for a given p.
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ArPENDIX A: CALCULATION OF THE FREQUENCY JITTER PSD

The frequency noise process, fn(t), is modeled to cent ain a white component, a 1/ f
component,and al/f? component. Mathematically, the PSD of frequency noise is modeled
as

ke ks

SeN(f) = k1 4 7 4 7 0 < f <oo, (Al)

where k; [HZ] is the one sided PSD of the white component, The constants k2[Hz?] and
k,[Hz®] indicate the magnitudes of thel/f and 1 /f? components of the frequency noise
respectively. The frequency noise model given i (Al ) was verified experimentally in [8]
and indirectly in [9, 10]. The parameters associated with the frequency noise of the a
diode-pumped Nd:YAG ring laser were determined to be ky=- 0.1 Hz, ky= 0.75x 10°HZ’,
and k3 = 0,5 x 10'Hz? [8].

High frequency content of the frequency noise is limited by the fact the finite response
t ime of the FPE. The detected frequency jitter can be related to the frequency mnoise by

the following model as

t
vir(t) = 2\1}/ In(7) dr, (A2)

t— At
where At is represents the photon lifetime of the FPE. The photon lifetime is related to
the FPE’s iwnm by vewnm = 1/(nAt)
Equation (A2) is a convolution of the frequency noise with a time window of height

1 /At, and width At. Mathematically

+o0
virr(t) - fn(r)e(t-r)dr = fu(t) +  oft), (A3)

- OO0

where

1if0<t <At
ct) = : (A4)
{ O otherwise.

By using the fundamental theorem of the power spectrum [13], the PSD of the frequency
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jitter becomes

2
Sin(f) = “»l?ﬂ;{\?tJ Sext/

sin(w fA k k

] o "f“ ploove e o
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APPENDIX B: CALCULATION OoF WHITE FREQUENCY NOISE CONTRIBUTION

The frequency locking error variance due to white frequency noise for a critically-

damped, perfect sec.ond-order OFLL canbe written as

2[ 0/8/ 1211 (B1)

a’f?
ow=k Tz
jo |44«

where a = 57 /(2By, ). This can be rewritten as

1k 2 o 2
02 — 1 f 12(1_, _ . f

Yo 2(nAt)? J
(mAt)? J[( 2y? +f] o [(2)2+ )’ cos(2rfAt)df }.  (B2)

o

Using 3.2¢5 and 3.733.3 of [11], aong with L’Hépitol’s rule of calculus, (B2)reduces to

) 1 k 8 8

2 1

= - - - -RB , — i

Ow 3 (DA At {1 [l SII,At] exp ( 5BLAt)} (B3)

When B At << 1, then (B3) can be approximated by truncating the Taylor series

expansion of exp (— By, At) as

1k
2 o1
Ow N 5o (B1.At << 1). (B4)

When BpAt >>1, then exp (—£BLAt)~ O, and (B3) can be reduced to

5_1_ k

o~
~o —

2 : ByLAt >> 1) B5
v Ga A (At D (B3)
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APPENDIX C: CALCULATION OF 1/f FrEQUENCY Noilct CONTRIBUTION

The frequency locking error variance due to 1/~ frequency uoise for a crit ically -

damped, perfect second-order OFLL can be written as

0o 202 2 . 2
N a’f sin (7 fAt) 1
ky [ f
I R C?2
(mAt)® /(; [(2')2 + —— sin? (rfAL) .
2 ) df
Noting that [(_j—-ff—’ :——dfr_,_fI and fuslng integration by parts, (C2)canbe
reduced to
k [o o}
0% = 5 [sin (21 fAL)] df. (C3)

: (27{At)30 [( ) 4 f2]
Using 3,723.1 of [11], (C3) is evaluated as

5 k 8 8 8 8
2 _ Y _ M ° b a2 : _°
oy = 16 (B A1) {E] <5Bl,At) exp (SI?LAt> + Ei <5BLAt) exp ( 51)‘1,At)} ,

(C4)
where El(z) and Ei(z) arc known as exponentia integrals and are given by [12],
oo~
Ey(z) = / St (larg z| < ), and (C5)
Ei(a‘)———[El(—.r+zoo) + E)(~2x — ice)] (> 0). (C6)

More insight into o? /¢ may be obt ained by approximating (C4) for the two extreme cases
of 13, At <<1land BpAt>> 1.
When the arguments of El (z) and Ei(z) are very small, they can be approximated by

truncating their series expansion [12]:

El(z) =-y—Inz- % -(-:-711—3:—:—2—'—! (larg z| < m)
n=1
N-—y-—Ilnz+4z-— %zz, and (C7)
Ei(2) 7+ln1+2;—; (z > 0)
~y+Inz+ a4 %—mz (C8)
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Therefore, for » <<1

[Ei(z)exp(x) + Ei(z)exp(—z)]~22(1- v - Ina). (C9)

Using (C9), the expression for the variance due to 1/~ frequency noise simplifies to
2 8
oy Rk [1—v - ln(gBl,At) (BLAt << 1). (c’'lo)

When the arguments of El (z) and Ei(z)are large, they can be approximated by

truncating their asymptotic expansions [12], as

e~ ? 1 2 6 .
E,<z)=—_{1-§+;—;—3+ , o (mgel < 3
- 1 2
~ & {1.._+_5 -~ (c11)
F4 FIA 2 }
. ; 1 2
Fi(z) = ~- 14-—47—5+-6§+... (z > 0)
{ T I T }
et 1 2
~;~—{1-}-;-} ;5} (C12)
Therefore, for = >>1
| _ p 2
[E1(z) exp(x) + Ei(z) exp(—2)] = p (1 + F) . (C13)

Using (C13), the expression for the variance due to 1/f frequency noise now simplifies to

2k
Tl (BuAt>> 1), (C14)

0, ST
1™ 64 (B At)?
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APPENDIX D: CALCULATION OF 1/f? FREQUENCY NOISE CONTRIBUTION

The frequency locking error variance due to 1 /f? frequency noise for a critically-

damped perfect second- order OFLL can be writ ten as

(e’ 272 . 2
2 g _of7 P lsin(xfAn)t 1,
e = [ |5t Tran ) 7 -
This can be rewritten as
1 ks /°° 1 * 1
02, =~ e | --/ ———cos(2n fAt)df ). (D2)
l/f 2(7.‘.At)2 0 [(l)2+f2]2 f o [(z)2+ f2]2 ( (
Using 3.251.4, and 3.729.1 of [11], (D2) reduces to
125 72 k3 8 8 )}
2 o220 T M o4 2BLAt ; WNARY D3
71/ 512(BLAt)2BL{ [ g ]e"p( 5L (D3)

When By At << 1, then (D3) can be approximated by truncating the Taylor series

expansion of exp (— £ BLAt) as

5m2 k,_

2 e
%118 X 16 R

(BLAt << 1). (D4)

When BpAt >>1, then exp (- §BLAt) ~ O, and (D3) can be reduced to

125 72 k3
2 == AR t _ D5
Ul/fz 512 (BLAt)2 E,_ (BLA >> l) ( o)
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Figure 1. The conceptual diagram of frequency stabilization subsystem using Fabry-Perot Etalon and dithering oscil'ator.
Only the optical path of the laser #1is shown.
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Figure 4. Normalized photodetector output as the laser is modulated by quadrature dithering oscillator:
no frequency locking error and zero noise.
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Figure 13. Root mean squared frequency locking error as a function of loop bandwidth for

several values of p.




